

Recall

e Collision-resistant Hash Function family from domain D to
range R is a set of hash functions

H={nD:ie1},

where 7 is the set of indices and each function h(): D = R

o Any efficient adversary given h(), where i & T, can output
x,x" € D such that h()(x) = h()(x') only with negligible
probability

@ One bit compressing (i.e., |D| = 2|R|) can be constructed
from the hardness of the discrete logarithm assumption as
follows. Let the discrete logarithm problem be hard in the
group G, then for b € {0,1} and x € Zyg|, we have:

h):{0,1} x Zjg| = G
h)(b,x) = y g
H={n":yeG}

Lecture 17: CRHF & Merkle-Damgard Construction

t-bit Compression

We can construct a t-bit compression function as follows: Let
be{0,1} and yM, ... y(® ¢ Zg)-

h(y(l)"“’y(t))(b,x) — y(l)bl. : .y(t)btgx

Each function is indexed by (y(), ..., y()) and each y() € {0,1}".
So, index size is tn.

@ Prove: If Discrete Logarithm assumption holds in G then the
construction above is a CRHF, where t = poly(n)

e Prove: If #(" is a CRHF family with functions
{0,1}™ — {0,1}", for all large enough n, then the
construction above is a CRHF family, where t = poly(n)

@ Think: What is the difference between the above two theorems

Lecture 17: CRHF & Merkle-Damgard Construction

Length-Halving CRHF

@ In particular, with t = n and G = {0,1}", the previously
constructed function is a length halving family of hash
functions where all functions are {0,1}%" — {0,1}"

Lecture 17: CRHF & Merkle-Damgard Construction

Tree-based Hashing

o We are interested in hashing {0,1}"" down to {0,1}"

@ One-bit compression at a time needs (t — 1)n x n size indices.
Can we do better?

Lecture 17: CRHF & Merkle-Damg&rd Construction

Tree-based Hashing

o Let 7 be a CRHF family with functions {0,1}*" — {0,1}"
and key size K

o We will construct CRHF family H(Y) with functions
{0,1}" — {0,1}" and key size K, for t > 2

o Let x € {0,1}"™ be represented as (x(1), ..., x(!)), where each
x() € {0,1}". The function is calculated in an iterated fashion
as represented below. Each box represents an application of a
function h € H and the output of the hash function is y. Call
this new function itr(h) function. So, we have

HO = {itr,(h): h e H}.

x(1) x(2) x(3) x(4) e x(t)

Lecture 17: CRHF & Merkle-Damgard Construction

Proof

Our adversary A on input a hash function h feeds itr.(h)
function to A*

Suppose A* produces x = (x(1), ..., x(1)) and

z=(zM,..., (V) such that it is a collision of the function
itr¢(h) function

Suppose the input to the last h-box in the evaluation of
itr¢(h)(x) is a and the input to the last h-box in the evaluation
of itr¢(h)(z) is b. We know that the output of the last h-box
is same in these two cases. If a # b, then we have found a
collision.

If a = b, then the output of the second last h-box is identical
in itr¢(h)(x) and itr¢(h)(z) evaluation. Therefore, we can
recurse on (x(), ... x(t=D) and (zM), ...,z ¢ — 1) that also
produce a collision (i.e. the output of the second last h-box)

Lecture 17: CRHF & Merkle-Damgard Construction

